尚光网 本站首页 本所首页 联系我们
10.1117/1.OE.56.9.094110SCIBONSE U, 1965, APPL PHYS LETT, V6, P155, DOI 10.1063/1.1754212; Chapman D, 1997, PHYS MED BIOL, V42, P2015, DOI 10.1088/0031-9155/42/11/001; Creath K., 1988, Progress in optics. Vol.XXVI, P349, DOI 10.1016/S0079-6638(08)70178-1; CREATH K, 1985, APPL OPTICS, V24, P3053; David C, 2002, APPL PHYS LETT, V81, P3287, DOI 10.1063/1.1516611; DAVIS TJ, 1995, NATURE, V373, P595, DOI 10.1038/373595a0; Dubois A, 2001, J OPT SOC AM A, V18, P1972, DOI 10.1364/JOSAA.18.001972; Hoshino M, 2014, J SYNCHROTRON RADIAT, V21, P1347, DOI 10.1107/S1600577514018128; Huang ZF, 2009, PHYS REV A, V79, DOI 10.1103/PhysRevA.79.013815; JARRELL RF, 1964, APPL OPTICS, V3, P1251, DOI 10.1364/AO.3.001251; Lewis RA, 2004, PHYS MED BIOL, V49, P3573, DOI 10.1088/0031-9155/49/16/005; Momose A, 2005, JPN J APPL PHYS 1, V44, P6355, DOI 10.1143/JJAP.44.6355; Momose A, 2003, JPN J APPL PHYS 2, V42, pL866, DOI 10.1143/JJAP.L866; Momose A, 1996, NAT MED, V2, P473, DOI 10.1038/nm0496-473; MOMOSE A, 1995, NUCL INSTRUM METH A, V352, P622, DOI 10.1016/0168-9002(95)90017-9; Momose A, 2006, JPN J APPL PHYS 1, V45, P5254, DOI 10.1143/JJAP.45.5254; Momose A, 2011, OPT EXPRESS, V19, P8423, DOI 10.1364/OE.19.008423; Momose A, 2009, OPT EXPRESS, V17, P12540, DOI 10.1364/OE.17.012540; Nugent KA, 1996, PHYS REV LETT, V77, P2961, DOI 10.1103/PhysRevLett.77.2961; Pfeiffer F, 2006, NAT PHYS, V2, P258, DOI 10.1038/nphys265; Sasaki O, 2000, APPL OPTICS, V39, P3847, DOI 10.1364/AO.39.003847; SASAKI O, 1986, APPL OPTICS, V25, P3137; SASAKI O, 1987, APPL OPTICS, V26, P1089, DOI 10.1364/AO.26.001089; Wang SH, 2015, CHINESE PHYS B, V24, DOI 10.1088/1674-1056/24/6/068703; Wang SH, 2015, J X-RAY SCI TECHNOL, V23, P189, DOI 10.3233/XST-150480; Weitkamp T, 2005, OPT EXPRESS, V13, P6296, DOI 10.1364/OPEX.13.006296; Wilkins SW, 1996, NATURE, V384, P335, DOI 10.1038/384335a0; Zanette I, 2012, P NATL ACAD SCI USA, V109, P10199, DOI 10.1073/pnas.1117861109; Zanette I, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3559849; Zhou SA, 2008, PHYS MEDICA, V24, P129, DOI 10.1016/j.ejmp.2008.05.006306097601569Opt. Eng.2017low dose; phase contrast; integrating bucket; phase stepping; phase modulationWHITE SYNCHROTRON-RADIATION; TALBOT INTERFEROMETRY; COMPUTED-TOMOGRAPHYREORTSOM217262X-ray phase-contrast imaging has experienced rapid development over the last few decades, and, in this technology, the phase modulation strategy of phase stepping (PS) is used most widely to measure the sample's phase signal. However, because of its discontinuous nature, PS has the defects of worse mechanical stability and high exposure dose, which greatly hinder its wide use in dynamic phase measurement and potential clinical applications. We demonstrate preliminary research on the use of integrating-bucket (IB) phase modulation method to retrieve the phase information in grating-based x-ray phase-contrast imaging. Experimental results show that our proposed method can be well employed to extract the differential phase-contrast image, compared with the commonly used PS strategy, the advantage of the IB phase modulation technique is that fast measurement and low dose are promising. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.Low-dose and fast grating-based x-ray phase-contrast imaging期刊论文EnglishWali, Faiz; Wang, Shenghao; Han, Huajie; Gao, Kun; Wu, Zhao; Zhu, Peiping; Tian, Yangchao94110 WOS:000413588800029
外文题目: Low-dose and fast grating-based x-ray phase-contrast imaging
作者: Wali, Faiz; Wang, Shenghao; Han, Huajie; Gao, Kun; Wu, Zhao; Zhu, Peiping; Tian, Yangchao
刊名: Opt. Eng.
年: 2017 卷: 56 期: 9 文章编号:94110
英文关键词:
low dose; phase contrast; integrating bucket; phase stepping; phase modulation
WHITE SYNCHROTRON-RADIATION; TALBOT INTERFEROMETRY; COMPUTED-TOMOGRAPHY
英文摘要:
文献类型: 期刊论文
正文语种: English
收录类别: SCI  
DOI: 10.1117/1.OE.56.9.094110
全文传递服务
clickdetails
页面点击量: 4
文章下载量: 1
visitlog
友情链接:
  中国光学期刊网
  光电汇
  上海大恒公司
  南京先进激光技术院
  光学产品库
  上海研发公共服务平台
版权所有 © 2009 中国科学院上海光学精密机械研究所 沪ICP备05015387号
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)