尚光网 本站首页 本所首页 联系我们
10.1021/acsnano.6b08704SCIALBERS W, 1961, J APPL PHYS, V32, P2220, DOI 10.1063/1.1777047; Brent JR, 2015, J AM CHEM SOC, V137, P12689, DOI 10.1021/jacs.5b08236; Castellanos-Gomez A, 2015, J PHYS CHEM LETT, V6, P4280, DOI 10.1021/acs.jpclett.5b01686; CHANDRASEKHAR HR, 1977, PHYS REV B, V15, P2177, DOI 10.1103/PhysRevB.15.2177; Fei R., 2016, PHYS REV LETT, V117; Fei RX, 2015, APPL PHYS LETT, V107, DOI 10.1063/1.4934750; Garmire E., 2013, LIGHT SCATTERING SOL, V8, P22; Guo LL, 2015, NANOSCALE, V7, P11915, DOI 10.1039/c5nr03282b; Guo RQ, 2015, PHYS REV B, V92, DOI 10.1103/PhysRevB.92.115202; Hanakata PZ, 2016, PHYS REV B, V94, DOI 10.1103/PhysRevB.94.035304; He JQ, 2015, ACS NANO, V9, P6436, DOI 10.1021/acsnano.5b02104; Johnson JB, 1999, SEMICOND SCI TECH, V14, P501, DOI 10.1088/0268-1242/14/6/303; Kim J, 2015, SCIENCE, V349, P723, DOI 10.1126/science.aaa6486; Kim S, 2012, NAT COMMUN, V3, DOI 10.1038/ncomms2018; Larentis S, 2012, APPL PHYS LETT, V101, DOI 10.1063/1.4768218; Li H, 2014, ACS NANO, V8, P6563, DOI 10.1021/nn501779y; Li LK, 2014, NAT NANOTECHNOL, V9, P372, DOI [10.1038/nnano.2014.35, 10.1038/NNANO.2014.35]; Li L, 2013, J AM CHEM SOC, V135, P1213, DOI 10.1021/ja3108017; Li SL, 2016, CHEM SOC REV, V45, P118, DOI 10.1039/c5cs00517e; Li XS, 2009, NANO LETT, V9, P4359, DOI 10.1021/nl902623y; Liang XL, 2011, ACS NANO, V5, P9144, DOI 10.1021/nn203377t; Liu EF, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7991; Liu H, 2014, ACS NANO, V8, P4033, DOI 10.1021/nn501226z; Madelung O, 2014, SEMICONDUCTORS DATA, P578; Markov I. V., 2004, CRYSTAL GROWTH BEGIN, P14; Martin J, 2008, NAT PHYS, V4, P144, DOI 10.1038/nphys781; Mehboudi M, 2016, NANO LETT, V16, P1704, DOI 10.1021/acs.nanolett.5b04613; NIKOLIC PM, 1977, J PHYS C SOLID STATE, V10, pL289, DOI 10.1088/0022-3719/10/11/003; NOGUCHI H, 1994, SOL ENERG MAT SOL C, V35, P325, DOI 10.1016/0927-0248(94)90158-9; Phaneuf-L'Heureux AL, 2016, NANO LETT, V16, P7761, DOI 10.1021/acs.nanolett.6b03907; Reina A, 2008, J PHYS CHEM C, V112, P17741, DOI 10.1021/jp807380s; Rodin AS, 2016, PHYS REV B, V93, DOI 10.1103/PhysRevB.93.045431; Schroder D. K., 2006, SEMICONDUCTOR MAT DE, P500; Shklovskii B. I., 1984, ELECT PROPERTIES DOP, P75; Sinsermsuksakul P, 2014, ADV ENERGY MATER, V4, DOI 10.1002/aenm.201400496; Sinsermsuksakul P, 2013, APPL PHYS LETT, V102, DOI 10.1063/1.4789855; Steinmann V, 2014, ADV MATER, V26, P7488, DOI 10.1002/adma.201402219; Sucharitakul S, 2016, NANOSCALE, V8, P19050, DOI 10.1039/c6nr07098a; Sze S. M., 2007, PHYS SEMICONDUCTOR D, P24; Vidal J, 2012, APPL PHYS LETT, V100, DOI 10.1063/1.3675880; Wangperawong A, 2013, APPL PHYS LETT, V103, DOI 10.1063/1.4816746; Wu MH, 2016, NANO LETT, V16, P3236, DOI 10.1021/acs.nanolett.6b00726; Xia FN, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5458; Xia J, 2016, NANOSCALE, V8, P2063, DOI 10.1039/c5nr07675g; Zhang S, 2014, ACS NANO, V8, P9590, DOI 10.1021/nn503893j; Zhao LD, 2016, SCIENCE, V351, P141, DOI 10.1126/science.aad3749; Zhao LD, 2014, NATURE, V508, P373, DOI 10.1038/nature13184; Zhao SL, 2015, NANO RES, V8, P288, DOI 10.1007/s12274-014-0676-84858831101122226ACS Nano22192017DEPENDENT RAMAN RESPONSES; FIELD-EFFECT TRANSISTORS; BLACK PHOSPHORUS; 2D SEMICONDUCTOR; NANOSHEETS; CRYSTALS; GRAPHENE; MOBILITY; MODES; FILMREORTSOM2172We study the anisotropic electronic properties of two-dimensional (2D) SnS, an analogue of phosphorene, grown by physical vapor transport. With transmission electron microscopy and polarized Raman spectroscopy, we identify the zigzag and armchair directions of the as-grown 2D crystals. The 2D SnS field-effect transistors with a cross Hall-bar structure are fabricated. They show heavily hole-doped (similar to 10(19) cm(-3)) conductivity with strong in-plane anisotropy. At room temperature, the mobility along the zigzag direction exceeds 20 cm(2) V-1 s(-1), which can be up to 1.7 times that in the armchair direction. This strong anisotropy is then explained by the effective mass ratio along the two directions and agrees well with previous theoretical predictions. Temperature-dependent carrier density determined the acceptor energy level to be similar to 45 meV above the valence band maximum. This value matches a calculated defect level of 42 meV for Sn vacancies, indicating that Sn deficiency is the main cause of the p-type conductivity.Two-Dimensional SnS: A Phosphorene Analogue with Strong In-Plane Electronic Anisotropy期刊论文EnglishTian, Zhen; Guo, Chenglei; Zhao, Mingxing; Li, Ranran; Xue, Jiamin WOS:000395357300118
外文题目: Two-Dimensional SnS: A Phosphorene Analogue with Strong In-Plane Electronic Anisotropy
作者: Tian, Zhen; Guo, Chenglei; Zhao, Mingxing; Li, Ranran; Xue, Jiamin
刊名: ACS Nano
年: 2017 卷: 11 期: 2 页: 2219--2226
英文关键词:

DEPENDENT RAMAN RESPONSES; FIELD-EFFECT TRANSISTORS; BLACK PHOSPHORUS; 2D SEMICONDUCTOR; NANOSHEETS; CRYSTALS; GRAPHENE; MOBILITY; MODES; FILM
英文摘要:
文献类型: 期刊论文
正文语种: English
收录类别: SCI  
DOI: 10.1021/acsnano.6b08704
全文传递服务
clickdetails
页面点击量: 2
文章下载量: 1
visitlog
友情链接:
  中国光学期刊网
  光电汇
  上海大恒公司
  南京先进激光技术院
  光学产品库
  上海研发公共服务平台
版权所有 © 2009 中国科学院上海光学精密机械研究所 沪ICP备05015387号
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)