尚光网 本站首页 本所首页 联系我们
10.1063/1.4977526SCIAndreev AA, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.026403; Audebert P, 2002, PHYS REV LETT, V89, DOI 10.1103/PhysRevLett.89.265001; Barty CPJ, 2004, NUCL FUSION, V44, pS266, DOI 10.1088/0029-5515/44/12/S18; Borghesi M, 1999, PHYS REV LETT, V83, P4309, DOI 10.1103/PhysRevLett.83.4309; Cai HB, 2013, PHYS PLASMAS, V20, DOI 10.1063/1.4812631; Cai HB, 2006, PHYS PLASMAS, V13, DOI 10.1063/1.2372463; Cao LH, 2011, PHYS PLASMAS, V18, DOI 10.1063/1.3589303; Chen F. F., 1984, PLASMA PHYS, V1; Clemmow P C, 1969, ELECTRODYNAMICS PART; Debayle A, 2010, PHYS REV E, V82, DOI 10.1103/PhysRevE.82.036405; Faure J, 2004, NATURE, V431, P541, DOI 10.1038/nature02963; Feurer T, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.016412; FEWS AP, 1994, PHYS REV LETT, V73, P1801, DOI 10.1103/PhysRevLett.73.1801; Fuchs J, 2006, NAT PHYS, V2, P48, DOI 10.1038/nphys199; Fujioka S, 2013, SCI REP-UK, V3, DOI 10.1038/srep01170; Geddes CGR, 2004, NATURE, V431, P538, DOI 10.1038/nature02900; Gibbon P., 2000, SHORT PULSE LASER IN; Haberberger D, 2012, NAT PHYS, V8, P95, DOI 10.1038/nphys2130; He Xian-tu, 1983, Acta Physica Sinica, V32, P325; Hu LX, 2015, PHYS PLASMAS, V22, DOI 10.1063/1.4913984; Kar S, 2009, PHYS REV LETT, V102, DOI 10.1103/PhysRevLett.102.055001; King JA, 2009, PHYS PLASMAS, V16, DOI 10.1063/1.3076142; Krushelnick K, 2005, PHYS PLASMAS, V12, DOI 10.1063/1.1902951; Lancaster KL, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.125002; Leemans WP, 2006, NAT PHYS, V2, P696, DOI 10.1038/nphys418; Liu F, 2012, PHYS PLASMAS, V19, DOI 10.1063/1.3671954; Luan SX, 2016, PHYS REV E, V94, DOI 10.1103/PhysRevE.94.053207; Ma GJ, 2016, PHYS REV E, V93, DOI 10.1103/PhysRevE.93.053209; Maksimchuk A, 2008, PHYS PLASMAS, V15, DOI 10.1063/1.2856373; NAKAJIMA K, 1995, PHYS REV LETT, V75, P984, DOI 10.1103/PhysRevLett.75.984.2; Nakamura T, 2007, PHYS PLASMAS, V14, DOI 10.1063/1.2789561; Paradkar BS, 2012, PHYS REV E, V86, DOI 10.1103/PhysRevE.86.056405; Qiao B, 2005, PHYS PLASMAS, V12, DOI 10.1063/1.1889090; Qiao B, 2006, PHYS PLASMAS, V13, DOI 10.1063/1.2200298; Robinson APL, 2008, PHYS REV LETT, V100, DOI 10.1103/PhysRevLett.100.025002; Robinson APL, 2007, PHYS PLASMAS, V14, DOI 10.1063/1.2768317; Schroeder C B, 2008, Physics of Plasmas, V15, P056704, DOI 10.1063/1.2841527; Sen S, 2014, HIGH ENERG DENS PHYS, V11, P80, DOI 10.1016/j.hedp.2014.03.003; SHUKLA PK, 1986, PHYS REP, V138, P1, DOI 10.1016/0370-1573(86)90157-2; Snavely RA, 2000, PHYS REV LETT, V85, P2945, DOI 10.1103/PhysRevLett.85.2945; TABAK M, 1994, PHYS PLASMAS, V1, P1626, DOI 10.1063/1.870664; Tsung FS, 2006, PHYS PLASMAS, V13, DOI 10.1063/1.2198535; Wadhwani N, 2002, PHYS PLASMAS, V9, P263, DOI 10.1063/1.1421369; Wagner R, 1997, PHYS REV LETT, V78, P3125, DOI 10.1103/PhysRevLett.78.3125; Wang WM, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.015001; Wilks SC, 2001, PHYS PLASMAS, V8, P542, DOI 10.1063/1.1333697; Wu D, 2014, PHYS PLASMAS, V21, DOI 10.1063/1.4904402; Wu SZ, 2010, PHYS PLASMAS, V17, DOI 10.1063/1.3432695; [徐涵 Xu Han], 2002, [计算物理, Chinese Journal of Computational Physics], V19, P305; Yang XH, 2015, APPL PHYS LETT, V106, DOI 10.1063/1.4922228505889423243Phys. Plasmas2017PLASMA; BEAMS; PROPAGATION; PULSES; GENERATION; WAKEFIELD; CHANNEL; DRIVENREORTSOM21796The propagation of left-hand (LH-) and right-hand (RH-) circularly polarized (CP) lasers and the accompanying generation of fast electrons in a magnetized cone-target with pre-formed plasmas are investigated. In this work, the strength of external magnetic field is comparable to that of the incident laser. Theoretical analyses indicate that the cut-off density of LH-CP laser is larger than that without an external magnetic field. When the external magnetic field normalized by the laser magnetic field is larger than the relativistic factor, the RH-CP laser will keep on propagating till the laser energy is depleted. The theoretical predictions are confirmed by two-dimensional particle-in-cell simulations. Simulation results show that in the presence of external longitudinal magnetic field, the energies and yields of fast electrons are greatly enhanced for RH-CP laser. Besides, the coupling efficiency of laser energy to energetic electrons for RH-CP laser is much higher than that for LH-CP laser and without external magnetic field. Furthermore, detailed simulation results perform an enhancement of the incident laser absorption with increasing external magnetic field. Published by AIP Publishing.Enhancing the electron acceleration by a circularly polarized laser interaction with a cone-target with an external longitudinal magnetic field期刊论文EnglishGong, J. X.; Cao, L. H.; Pan, K. Q.; Xiao, C. Z.; Wu, D.; He, X. T.33103 WOS:000397872500057
外文题目: Enhancing the electron acceleration by a circularly polarized laser interaction with a cone-target with an external longitudinal magnetic field
作者: Gong, J. X.; Cao, L. H.; Pan, K. Q.; Xiao, C. Z.; Wu, D.; He, X. T.
刊名: Phys. Plasmas
年: 2017 卷: 24 期: 3 文章编号:33103
英文关键词:

PLASMA; BEAMS; PROPAGATION; PULSES; GENERATION; WAKEFIELD; CHANNEL; DRIVEN
英文摘要:
文献类型: 期刊论文
正文语种: English
收录类别: SCI  
DOI: 10.1063/1.4977526
全文传递服务
clickdetails
页面点击量: 5
文章下载量: 1
visitlog
友情链接:
  中国光学期刊网
  光电汇
  上海大恒公司
  南京先进激光技术院
  光学产品库
  上海研发公共服务平台
版权所有 © 2009 中国科学院上海光学精密机械研究所 沪ICP备05015387号
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)