尚光网 本站首页 本所首页 联系我们
10.1021/acs.jpcc.7b04599SCIAbdesselem M, 2014, ACS NANO, V8, P11126, DOI 10.1021/nn504170x; Chen DQ, 2007, OPT MATER, V29, P1693, DOI 10.1016/j.optmat.2006.09.002; Chen DQ, 2009, OPT LETT, V34, P2882, DOI 10.1364/OL.34.002882; Chen DQ, 2009, APPL PHYS LETT, V94, DOI 10.1063/1.3076111; Chen DQ, 2005, MATER CHEM PHYS, V95, P264, DOI [10.1016/j.matchemphys.2005.06.017, 10.1016/j.matcehmphys.2005.06.017]; Chen GY, 2008, J PHYS CHEM C, V112, P12030, DOI 10.1021/jp804064g; Chen Z, 2015, J PHYS CHEM C, V119, P24056, DOI 10.1021/acs.jpcc.5b08103; Das GK, 2008, J PHYS CHEM C, V112, P11211, DOI 10.1021/jp802076n; Del-Castillo J, 2009, OPT MATER, V32, P104, DOI 10.1016/j.optmat.2009.06.013; Francisco M., 2011, J NONCRYST SOLIDS, V357, P1463; Fujii M, 2013, J PHYS CHEM C, V117, P1113, DOI 10.1021/jp309510s; Gao DL, 2013, J ALLOY COMPD, V554, P395, DOI 10.1016/j.jallcom.2012.12.010; Georgescu S, 2013, J LUMIN, V143, P150, DOI 10.1016/j.jlumin.2013.04.002; Jiang N, 2012, PHYS STATUS SOLIDI-R, V6, P487, DOI 10.1002/pssr.201206476; Kacmarek SM, 2008, J ALLOY COMPD, V451, P116, DOI 10.1016/j.jallcom.2007.04.142; Kishi Y, 2005, J AM CERAM SOC, V88, P3423, DOI 10.1111/j.1551-2916.2005.00614.x; Kwon OS, 2016, ACS NANO, V10, P1512, DOI 10.1021/acsnano.5b07075; LANGFORD JI, 1978, J APPL CRYSTALLOGR, V11, P102, DOI 10.1107/S0021889878012844; Lauria A, 2013, ACS NANO, V7, P7041, DOI 10.1021/nn402357s; Li PG, 2010, MATER LETT, V64, P161, DOI 10.1016/j.matlet.2009.10.032; Lin H, 2003, J APPL PHYS, V93, P186, DOI 10.1063/1.1527209; Liu CX, 2015, RSC ADV, V5, P17300, DOI 10.1039/c5ra00912j; Manasa P, 2016, OPT MATER, V62, P139, DOI 10.1016/j.optmat.2016.09.006; Mauser N, 2015, ACS NANO, V9, P3617, DOI 10.1021/nn504993e; Okuno M, 2005, J NON-CRYST SOLIDS, V351, P1032, DOI 10.1016/j.jnoncrysol.2005.01.014; Peng W., 2016, NANOTECHNOLOGY, V27; Salas P, 2005, OPT MATER, V27, P1295, DOI 10.1016/j.optmat.2004.10.019; Secu M, 2011, OPT MATER, V33, P613, DOI 10.1016/j.optmat.2010.11.016; Secu M, 2009, J NON-CRYST SOLIDS, V355, P1869, DOI 10.1016/j.jnoncrysol.2009.04.062; Serqueira EO, 2014, J ALLOY COMPD, V582, P730, DOI 10.1016/j.jallcom.2013.08.108; Stamboulis A, 2004, J NON-CRYST SOLIDS, V333, P101, DOI 10.1016/j.noncrysol.2003.09.049; Suzuki T, 2011, OPT MATER, V33, P1943, DOI 10.1016/j.optmat.2011.03.035; Tachibana H, 2017, ACS PHOTONICS, V4, P223, DOI 10.1021/acsphotonics.6b00964; TSUNAWAKI Y, 1981, J NON-CRYST SOLIDS, V44, P369, DOI 10.1016/0022-3093(81)90039-9; Xiao Q, 2016, SCI REP, V6; Xu DK, 2015, J PHYS CHEM C, V119, P6852, DOI 10.1021/acs.jpcc.5b00882; Yuan CZ, 2014, ACS APPL MATER INTER, V6, P18018, DOI 10.1021/am504866g; Zhang F, 2012, NANO LETT, V12, P2852, DOI 10.1021/nl300421n; Zhang F, 2012, NANO LETT, V12, P61, DOI 10.1021/nl202949y; Zhao JJ, 2016, J PHYS CHEM C, V120, P17726, DOI 10.1021/acs.jpcc.6b057964060976051212815391J. Phys. Chem. C153842017DOPED CAF2 NANOCRYSTALS; PHONON SIDE-BAND; FLUOROSILICATE GLASSES; RAMAN-SPECTROSCOPY; ENERGY-TRANSFER; NANO-CRYSTALS; NANOPARTICLES; EMISSION; EXCITATION; IONSREORTSOM2173In this Article, large enhancement in upconversion (UC) luminescence was verified in a transparent aluminosilicate glass-ceramics (GCs) containing CaF2 nanocrystals (NCs) codoped with Era(3+) and Yb3+ ions. On the basis of the joint spectroscopic and structural characterizations, we suggest that the precipitation of fluoride NCs is correlated with the preexistence of the fluoride-rich domains in the as-melt glass, which is supported by scanning transmission electron microscopy (STEM) and reproduced by molecular dynamics (MD) simulation. The precipitation of the fluoride NCs starts from a phase-separated as-melt glass consisting of fluorine-rich and oxygen-rich domains, while the spatial distribution of rare earth (RE) ions and the vibration energies of the bonds connecting RE ions remain almost unchanged after crystallization. In the GCs, both the fluoride domain and the oxygen-containing polyhedrons surrounding RE ions experience significant ordering, which may affect the UC emission for both glasses and GCs. We therefore attribute the enhanced UC emissions of the GCs to the long-range structural ordering and the change of site symmetry surrounding RE ions, rather than the preference of RE ions in migrating from fluoride-rich phase to the fluoride NCs. Our results may have strong implications for a better understanding of the enhanced UC emission in similar oxyfluoride GCs.Understanding Enhanced Upconversion Luminescence in Oxyfluoride Glass-Ceramics Based on Local Structure Characterizations and Molecular Dynamics Simulations期刊论文EnglishAli, Mohamed A.; Ren, Jinjun; Liu, Xiaofeng; Qiao, Xvsheng; Qiu, Jianrong WOS:000406355700045
外文题目: Understanding Enhanced Upconversion Luminescence in Oxyfluoride Glass-Ceramics Based on Local Structure Characterizations and Molecular Dynamics Simulations
作者: Ali, Mohamed A.; Ren, Jinjun; Liu, Xiaofeng; Qiao, Xvsheng; Qiu, Jianrong
刊名: J. Phys. Chem. C
年: 2017 卷: 121 期: 28 页: 15384--15391
英文关键词:

DOPED CAF2 NANOCRYSTALS; PHONON SIDE-BAND; FLUOROSILICATE GLASSES; RAMAN-SPECTROSCOPY; ENERGY-TRANSFER; NANO-CRYSTALS; NANOPARTICLES; EMISSION; EXCITATION; IONS
英文摘要:
文献类型: 期刊论文
正文语种: English
收录类别: SCI  
DOI: 10.1021/acs.jpcc.7b04599
全文传递服务
clickdetails
页面点击量: 4
文章下载量: 1
visitlog
友情链接:
  中国光学期刊网
  光电汇
  上海大恒公司
  南京先进激光技术院
  光学产品库
  上海研发公共服务平台
版权所有 © 2009 中国科学院上海光学精密机械研究所 沪ICP备05015387号
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)