尚光网 本站首页 本所首页 联系我们
10.1117/12.2245678ISTPAnderson K, 2004, OPT LETT, V29, P1402, DOI 10.1364/OL.29.001402; Anderson K, 2006, SMPTE MOTION IMAG J, V115, P200; ANDERSON LK, 1968, BELL LAB REC, V46, P319; Burr G. W., 2003, P SOC PHOTO-OPT INS, V5225, P16; Coufal H., 2000, HOLOGRAPHIC DATA STO; Curtis K., 2011, HOLOGRAPHIC DATA STO; Eichler HJ, 1998, IEEE J SEL TOP QUANT, V4, P840, DOI 10.1109/2944.735770; Gan ZS, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3061; Gu M, 2014, LIGHT-SCI APPL, V3, DOI 10.1038/lsa.2014.58; Habuta H, 2008, JPN J APPL PHYS, V47, P7160, DOI 10.1143/JJAP.47.7160; Hao Ruan, 2014, Frontiers of Optoelectronics, V7, P450, DOI 10.1007/s12200-014-0458-7; HEANUE JF, 1994, SCIENCE, V265, P749, DOI 10.1126/science.265.5173.749; HELL SW, 1994, OPT LETT, V19, P780, DOI 10.1364/OL.19.000780; Horimai H, 2006, APPL OPTICS, V45, P910, DOI 10.1364/AO.45.000910; Horimai H, 2007, IEEE T MAGN, V43, P943, DOI 10.1109/TMAG.2006.888528; Hoskins A, 2008, JPN J APPL PHYS, V47, P5912, DOI 10.1143/JJAP.47.5912; Ichimura I, 2006, APPL OPTICS, V45, P1794, DOI 10.1364/AO.45.001794; Ichimura I, 2006, PROC SPIE, V6282, DOI 10.1117/12.685229; Information Storage Ind dustry Consortium, 2012, INT MAGN TAP STOR RO; Ishii T, 2012, 2012 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), P427, DOI 10.1109/ICCE.2012.6161800; Kikukawa T, 2010, JPN J APPL PHYS, V49, DOI 10.1143/JJAP.49.08KF01; KUBOTA K, 1980, APPL OPTICS, V19, P944, DOI 10.1364/AO.19.000944; Li XP, 2015, OPTICA, V2, P567, DOI 10.1364/OPTICA.2.000567; Liu JQ, 2013, PROC SPIE, V8847, DOI 10.1117/12.2026508; Milster T. D., 2006, P SOC PHOTO-OPT INS, V6282; Min CK, 2012, MICROSYST TECHNOL, V18, P1623, DOI 10.1007/s00542-012-1600-3; Mishima K, 2006, PROC SPIE, V6282, DOI 10.1117/12.685207; Mitsumori A, 2009, JPN J APPL PHYS, V48, DOI 10.1143/JJAP.48.03A055; Miyamoto M, 2006, JPN J APPL PHYS 1, V45, P1226, DOI 10.1143/JJAP.45.1226; Nishihara T, 2011, JPN J APPL PHYS, V50, DOI 10.1143/JJAP.50.062503; Nobukawa T, 2013, JPN J APPL PHYS, V52, DOI 10.7567/JJAP.52.09LD09; Ogasawara M, 2011, JPN J APPL PHYS, V50, DOI 10.1143/JJAP.50.09MF01; Orlic S, 2012, J OPTICS-UK, V14, DOI 10.1088/2040-8978/14/7/072401; Orlic S, 2009, 2009 OPTICAL DATA STORAGE TOPICAL MEETING, P1, DOI [10.1109/CLEOE-EQEC.2009.5196247, 10.1109/ODS.2009.5031727]; Rosen H. J., 2005, P SOC PHOTO-OPT INS, P14; Ruan H, 2013, PROC SPIE, V8913, DOI 10.1117/12.2032302; Shida N, 2003, JPN J APPL PHYS 1, V42, P778, DOI 10.1143/JJAP.42.778; Shimada K., 2009, OPTICAL DATA STORAGE; Shimada KI, 2014, OPT ENG, V53, DOI 10.1117/1.OE.53.2.025102; Shimura T, 2006, OPT LETT, V31, P1208, DOI 10.1364/OL.31.001208; STAEBLER DL, 1975, APPL PHYS LETT, V26, P182, DOI 10.1063/1.88108; TSUNODA Y, 1976, APPL OPTICS, V15, P1398, DOI 10.1364/AO.15.001398; VANHEERDEN PJ, 1963, APPL OPTICS, V2, P393; Xiaodi T., 2006, Acta Optica Sinica, V26, P827; Yamatsu H., 2005, ISOM ODS THE145International Symposium on Optical Communication and Optical Fiber Sensors / International Symposium on Optical Memories for Big Data Storage592263310158Proc.SPIE2016multilayer optical storage; holographic data storage; SPIN based optical storage; Big Data CenterINFORMATION-STORAGE; HOLOGRAPHIC STORAGE; DISK; CAPACITY; FUTURE; SYSTEMSESE11119911581158EIn big data center, optical storage technologies have many advantages, such as energy saving and long lifetime. However, how to improve the storage density of optical storage is still a huge challenge. Maybe the multilayer optical storage technology is the good candidate for big data center in the years to come. Due to the number of layers is primarily limited by transmission of each layer, the largest capacities of the multilayer disc are around 1 TB/disc and 10 TB/cartridge. Holographic data storage (HDS) is a volumetric approach, but its storage capacity is also strictly limited by the diffractive nature of light. For a holographic disc with total thickness of 1.5mm, its potential capacities are not more than 4TB/disc and 40TB/cartridge. In recent years, the development of super resolution optical storage technology has attracted more attentions. Super-resolution photoinduction-inhibition nanolithography (SPIN) technology with 9 nm feature size and 52nm two-line resolution was reported 3 years ago. However, turning this exciting principle into a real storage system is a huge challenge. It can be expected that in the future, the capacities of 10TB/disc and 100TB/cartridge can be achieved. More importantly, due to breaking the diffraction limit of light, SPIN technology will open the door to improve the optical storage capacity steadily to meet the need of the developing big data center.OPTICAL COMMUNICATION AND OPTICAL FIBER SENSORS AND OPTICAL MEMORIES FOR BIG DATA STORAGEReview of ultra-high density optical storage technologies for big data center会议论文EnglishHao, Ruan; Jie, Liu40777101580E WOS:000391229900014
外文题目: Review of ultra-high density optical storage technologies for big data center
作者: Hao, Ruan; Jie, Liu
刊名: Proc.SPIE
来源图书: OPTICAL COMMUNICATION AND OPTICAL FIBER SENSORS AND OPTICAL MEMORIES FOR BIG DATA STORAGE
年: 2016 卷: 10158 文章编号:101580E
会议名称: International Symposium on Optical Communication and Optical Fiber Sensors / International Symposium on Optical Memories for Big Data Storage
英文关键词:
multilayer optical storage; holographic data storage; SPIN based optical storage; Big Data Center
INFORMATION-STORAGE; HOLOGRAPHIC STORAGE; DISK; CAPACITY; FUTURE; SYSTEM
英文摘要:
文献类型: 会议论文
正文语种: English
收录类别: ISTP  
DOI: 10.1117/12.2245678
全文传递服务
clickdetails
页面点击量: 9
文章下载量: 1
visitlog
友情链接:
  中国光学期刊网
  光电汇
  上海大恒公司
  南京先进激光技术院
  光学产品库
  上海研发公共服务平台
版权所有 © 2009 中国科学院上海光学精密机械研究所 沪ICP备05015387号
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)