尚光网 本站首页 本所首页 联系我们
10.1038/srep39781SCIAgarwal GS, 2012, PHYS REV A, V85, DOI 10.1103/PhysRevA.85.031802; Agarwal GS, 2010, PHYS REV A, V81, DOI 10.1103/PhysRevA.81.041803; Aggarwal N, 2014, INT J QUANTUM INF, V12, DOI 10.1142/S0219749914500245; Akram MJ, 2015, J PHYS B-AT MOL OPT, V48, DOI 10.1088/0953-4075/48/6/065502; Arcizet O, 2006, NATURE, V444, P71, DOI 10.1038/nature05244; Arvanitaki A, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.071105; Aspelmeyer M, 2014, QUANT SCI TECH, P1, DOI 10.1007/978-3-642-55312-7; Aspelmeyer M, 2014, REV MOD PHYS, V86, P1391, DOI 10.1103/RevModPhys.86.1391; Aspelmeyer M, 2012, PHYS TODAY, V65, P29, DOI 10.1063/PT.3.1640; Barzanjeh S, 2011, PHYS REV A, V84, DOI 10.1103/PhysRevA.84.063850; Bera A, 2016, OPT LETT, V41, P2233, DOI 10.1364/OL.41.002233; Cao C, 2016, SCI REP-UK, V6, DOI 10.1038/srep22920; Chang Y, 2011, PHYS REV A, V83, DOI 10.1103/PhysRevA.83.063826; Chao CY, 2003, APPL PHYS LETT, V83, P1527, DOI 10.1063/1.1605261; De Chiara G, 2011, PHYS REV A, V83, DOI 10.1103/PhysRevA.83.052324; Dong CH, 2012, SCIENCE, V338, P1609, DOI 10.1126/science.1228370; Dong Y, 2011, PHYS REV A, V83, DOI 10.1103/PhysRevA.83.031608; Eichenfield M, 2009, NATURE, V462, P78, DOI 10.1038/nature08524; FANO U, 1961, PHYS REV, V124, P1866, DOI 10.1103/PhysRev.124.1866; Gao M, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.013833; Gardiner C., 2004, QUANTUM NOISE; Ghobadi R, 2011, PHYS REV A, V84, DOI 10.1103/PhysRevA.84.033846; Gradshteyn I., 1980, TABLE INTEGRALS SERI; Hayashi S, 2016, APPL PHYS LETT, V108, DOI 10.1063/1.4940984; Hofer SG, 2011, PHYS REV A, V84, DOI 10.1103/PhysRevA.84.052327; Huang SM, 2011, PHYS REV A, V83, DOI 10.1103/PhysRevA.83.043826; Ilchenko VS, 2006, IEEE J SEL TOP QUANT, V12, P15, DOI 10.1109/JSTQE.2005.862943; Jiang C, 2013, PHYS REV A, V88, DOI 10.1103/PhysRevA.88.055801; Jiang C, 2013, OPT EXPRESS, V21, P12165, DOI 10.1364/OE.21.012165; Jiao Y., ARXIV160205308V2; Jing H, 2015, SCI REP-UK, V5, DOI 10.1038/srep09663; Jing H, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.053604; Kippenberg TJ, 2008, SCIENCE, V321, P1172, DOI 10.1126/science.1156032; Kyriienko O, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.076402; Lei FC, 2014, APPL PHYS LETT, V105, DOI 10.1063/1.4895632; Li BB, 2012, APPL PHYS LETT, V100, DOI 10.1063/1.3675571; Li BB, 2011, APPL PHYS LETT, V98, DOI 10.1063/1.3541884; Longhi S, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.063809; Lu XY, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.253601; Lu Y, 2005, OPT LETT, V30, P3069, DOI 10.1364/OL.30.003069; Lu Y, 2011, OPT COMMUN, V284, P476, DOI 10.1016/j.optcom.2010.08.025; Ludwig M, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.063601; Ma JY, 2015, SCI REP-UK, V5, DOI 10.1038/srep11278; Ma PC, 2014, PHYS REV A, V90, DOI 10.1103/PhysRevA.90.043825; Mancini S, 2003, PHYS REV LETT, V90, DOI 10.1103/PhysRevLett.90.137901; Marquardt F., 2009, PHYSICS, V2, P40, DOI DOI 10.1103/PHYSICS.2.40; Matsko AB, 2006, IEEE J SEL TOP QUANT, V12, P3, DOI 10.1109/JSTQE.2005.862952; Miroshnichenko AE, 2010, REV MOD PHYS, V82, P2257, DOI 10.1103/RevModPhys.82.2257; Monifi F, 2016, NAT PHOTONICS, V10, P399, DOI [10.1038/nphoton.2016.73, 10.1038/NPHOTON.2016.73]; Moritake Y, 2016, OPT EXPRESS, V24, P9332, DOI 10.1364/OE.24.009332; Qu KN, 2013, PHYS REV A, V87, DOI 10.1103/PhysRevA.87.063813; Reed GT, 2010, NAT PHOTONICS, V4, P518, DOI [10.1038/NPHOTON.2010.179, 10.1038/nphoton.2010.179]; Safavi-Naeini AH, 2011, NATURE, V472, P69, DOI 10.1038/nature09933; Sete EA, 2012, PHYS REV A, V85, DOI 10.1103/PhysRevA.85.043824; Sheng JT, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.223906; Spillane S. M., 2004, THESIS; Suzuki H, 2015, PHYS REV A, V92, DOI 10.1103/PhysRevA.92.033823; Tanaka Y, 2007, NAT MATER, V6, P862, DOI 10.1038/nmat1994; Tassin P, 2012, PHYS REV LETT, V109, DOI 10.1103/PhysRevLett.109.187401; Teufel JD, 2009, NAT NANOTECHNOL, V4, P820, DOI [10.1038/nnano.2009.343, 10.1038/NNANO.2009.343]; Tian L, 2013, PHYS REV LETT, V110, DOI 10.1103/PhysRevLett.110.233602; Vahala KJ, 2003, NATURE, V424, P839, DOI 10.1038/nature01939; Vahala K. J., 2004, OPTICAL MICROCAVITIE; Vitali D, 2007, PHYS REV LETT, V98, DOI 10.1103/PhysRevLett.98.030405; Walls D. F., 1994, QUANTUM OPTICS; Wang C, 2015, APPL OPTICS, V54, P4623, DOI 10.1364/AO.54.004623; Wang YD, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.013807; Wang YD, 2012, PHYS REV LETT, V108, DOI 10.1103/PhysRevLett.108.153603; Weis S, 2010, SCIENCE, V330, P1520, DOI 10.1126/science.1195596; Xiong H, 2012, PHYS REV A, V86, DOI 10.1103/PhysRevA.86.013815; Xu XW, 2015, PHYS REV A, V92, DOI 10.1103/PhysRevA.92.013852; Yan D, 2015, PHYS REV A, V91, DOI 10.1103/PhysRevA.91.023813; Yasir KA, 2016, SCI REP-UK, V6, DOI 10.1038/srep226517358894257Sci Rep2017ELECTROMAGNETICALLY INDUCED TRANSPARENCY; SLOW-LIGHT; CAVITY OPTOMECHANICS; RESONANCE; SYSTEM; RESONATORSREORTSOM21719We study a three-mode (i.e., a clockwise mode, a counterclockwise mode, and a mechanical mode) coherent coupling regime of the optical whispering-gallery-mode (WGM) microresonator optomechanical system by considering a pair of counterpropagating modes in a general case. The WGM microresonator is coherently driven by a strong control laser field and a relatively weak probe laser field via a tapered fiber. The system parameters utilized to explore this process correspond to experimentally demonstrated values in the WGM microresonator optomechanical systems. By properly adjusting the coupling rate of these two counterpropagating modes in the WGM microresonator, the steady-state displacement behaviors of the mechanical oscillation and the normalized power transmission and reflection spectra of the output fields are analyzed in detail. It is found that the mode coupling plays a crucial role in rich line-shape structures. Some interesting phenomena of the system, including optical multistability and sharp asymmetric Fano-shape optomechanically induced transparency (OMIT), can be generated with a large degree of control and tunability. Our obtained results in this study can be used for designing efficient all-optical switching and high-sensitivity sensor.Optical multistability and Fano line-shape control via mode coupling in whispering-gallery-mode microresonator optomechanics期刊论文EnglishZhang, Suzhen; Li, Jiahua; Yu, Rong; Wang, Wei; Wu, Ying39781 WOS:000391149700001
外文题目: Optical multistability and Fano line-shape control via mode coupling in whispering-gallery-mode microresonator optomechanics
作者: Zhang, Suzhen; Li, Jiahua; Yu, Rong; Wang, Wei; Wu, Ying
刊名: Sci Rep
年: 2017 卷: 7 文章编号:39781
英文关键词:

ELECTROMAGNETICALLY INDUCED TRANSPARENCY; SLOW-LIGHT; CAVITY OPTOMECHANICS; RESONANCE; SYSTEM; RESONATORS
英文摘要:
文献类型: 期刊论文
正文语种: English
收录类别: SCI  
DOI: 10.1038/srep39781
全文传递服务
clickdetails
页面点击量: 5
文章下载量: 1
visitlog
友情链接:
  中国光学期刊网
  光电汇
  上海大恒公司
  南京先进激光技术院
  光学产品库
  上海研发公共服务平台
版权所有 © 2009 中国科学院上海光学精密机械研究所 沪ICP备05015387号
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)