尚光网 本站首页 本所首页 联系我们
10.1117/12.8225175715th International School on Quantum Electronics; Laser Physics and Applications4172337027702715 (15 pp.)Proc.SPIE2008SESE7799727727151Biophotonics techniques are applied to several fields in medicine and biology. The laser based techniques, such as the laser induced fluorescence (LIF) spectroscopy and the optical coherence tomography (OCT), are of particular importance in dermatology, where the laser radiation could be directly applied to the tissue target (e.g. skin). In addition, OCT resolves architectural tissue properties that might be useful as tumour discrimination parameters for skin as well as for ocular non-invasive visualization. Skin and ocular tissues are complex multilayered and inhomogeneous organs with spatially varying optical properties. This fact complicates the quantitative analysis of the fluorescence and/or light scattering spectra, even from the same tissue sample. To overcome this problem, mathematical simulation is applied for the investigation of the human tissue optical properties, in the visible/infrared range of the spectrum, resulting in a better discrimination of several tissue pathologies. In this work, we present i) a general view on biophotonics applications in diagnosis of human diseases, ii) some specific results on laser spectroscopy techniques, as LIF measurements, applied in arterial and skin pathologies and iii) some experimental and theoretical results on ocular OCT measurements. Regarding the LIF spectroscopy, we examined the autofluorescence properties of several human skin samples, excised from humans undergoing biopsy examination. A nitrogen laser was used as an excitation source, emitting at 337 nm (ultraviolet excitation). Histopathology examination of the samples was also performed, after the laser spectroscopy measurements and the results from the spectroscopic and medical analysis were compared, to differentiate malignancies, e.g. basal cell carcinoma tissue (BCC), from normal skin tissue. Regarding the OCT technique, we correlated human data, obtained from patients undergoing OCT examination, with Monte Carlo simulated cornea and retina tissues for diagnosis of ocular diseases.http://spiedigitallibrary.aip.org/browse/vol_level.jsp?type=volrange&scode=7000+-+7099Biophotonics in diagnosis and modeling of tissue pathologies会议论文EnglishSerafetinides, A.A.; Makropoulou, M.; Drakaki, E.6679 INSPEC:10406818
外文题目: Biophotonics in diagnosis and modeling of tissue pathologies
作者: Serafetinides, A.A.; Makropoulou, M.; Drakaki, E.
刊名: Proc.SPIE
年: 2008 卷: 7027 页: --702715 (15 pp.)
会议名称: 15th International School on Quantum Electronics; Laser Physics and Applications
英文摘要:
文献类型: 会议论文
正文语种: English
DOI: 10.1117/12.822517
全文链接: 点击进入
全文传递服务
clickdetails
页面点击量: 20
文章下载量: 1
visitlog
友情链接:
  上海大恒公司
  南京先进激光技术院
  光学产品库
版权所有 © 2009 中国科学院上海光学精密机械研究所 沪ICP备05015387号
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)